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ABSTRACT

Let Z be a complete set of Sylow subgroups of a finite group G, that is, for

each prime p dividing the order of G, Z contains one and only one Sylow

p-subgroup of G. A subgroup H of G is said to be Z-permutable in G

if H permutes with every member of Z. In this paper we characterize p-

nilpotency of finite groups G; we will assume that some minimal subgroups

or 2-minimal subgroups of G are Z-permutable in G. Moreover, the duals

of some recent results are obtained.
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1. Introduction

All groups considered in this paper are finite. We use conventional notions and

notation, as in Huppert [11]. Throughout this article, G stands for a finite

group.

A subgroup of G is called quasinormal in G if it permutes with every

subgroup of G. We say, following Kegel [13], that a subgroup of G is π-

quasinormal in G if it permutes with every Sylow subgroup of G. Recently,

Asaad and Heliel [2] introduced a new embedding property, namely, the Z-

permutability of subgroups of a group. A set Z is called a complete set of Sylow

subgroups of G if for each prime p ∈ π(G) (the set of distinct primes dividing

|G|), Z contains exactly one Sylow p-subgroup of G, say, Gp. A subgroup of G

is said to be Z-permutable in G if it permutes with every member of Z. Ob-

viously, every π-quasinormal subgroup is Z-permutable. In contrast to the fact

that every π-quasinormal subgroup is subnormal (see [13]), it does not hold, in

general, that every Z-permutable subgroup of G is subnormal in G. It suffices

to consider the alternating group of degree 4.

Many authors have investigated the structure of a group G under the assump-

tion that some maximal subgroups of some subgroups of G are well-situated in

G. Srinivasan [19] proved that a group G is supersolvable if every maximal sub-

group of any Sylow subgroup of G is normal. Later on, Wall [20] gave a complete

classification of finite groups under the assumption of Srinivasan. From [1, The-

orem 3.1], we know that if G is a group and p the smallest prime dividing |G|,

then G is p-nilpotent if the maximal subgroups of the Sylow p-subgroups of G

are π-quasinormal in G. Moreover, Asaad and Heliel proved in [2] that if Z is

a complete set of Sylow subgroups of a group G and if the maximal subgroups

of Gp are Z-permutable subgroups of G, for all Gp ∈ Z, then G is p1-nilpotent,

where p1 is the smallest prime dividing |G|. In [15], the authors generalize the

above mentioned results by obtaining the following results [15, Theorem 3.1

and 3.4]: Let Z be a complete set of Sylow subgroups of a group G and p the

smallest prime dividing |G|. Then G is p-nilpotent if one of followings holds:

(1) the maximal subgroups of Gp ∈ Z are Z-permutable subgroups of G; (2) G

is A4-free and the 2-maximal subgroups of Gp are Z-permutable subgroups of

G.

The minimal subgroups of G are the subgroups of G of prime order. A

2-minimal subgroup of G is the subgroup which contains a minimal subgroup
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of G as its maximal subgroup. Obviously, the subgroups of G of prime square

order are a kind of 2-minimal subgroups of G.

As we know, the concepts of maximal subgroup and minimal subgroup are

dual in the finite group theory, so influences of the properties of the minimal

subgroups of a finite group G on the structure of G were investigated by many

authors. For example, Itô has proved that if the center of a group G of odd

order contains all minimal subgroups of G, then G is nilpotent. An extension of

Itô’s result is the following statement [11, p. 435, Satz 5.5]: if, for an odd prime

p, every subgroup of G of order p lies in the center of G, then G is p-nilpotent;

if all elements of G of order 2 and 4 lie in the center of G, then G is 2-nilpotent.

In this paper we want to go further in this direction. We receive the following

results, which are the duals of results in [15]:

Theorem 3.1: Let G be a finite group and Z a complete set of Sylow subgroups

of G. Suppose p is the smallest prime dividing the order of G and P is the Sylow

p-subgroup in Z. If every cyclic subgroup of P of prime order or order 4 (when

p = 2) is Z-permutable in G, then G is p-nilpotent.

Theorem 3.4: Let G be a finite group and Z a complete set of Sylow subgroups

of G. Suppose that p is the smallest prime dividing the order of G, G is A4-free

and P is the Sylow p-subgroup in Z. If every subgroup of P of prime square

order is Z-permutable in G, then G is p-nilpotent.

Let F be a class of groups. We call F a formation provided that (i) if G ∈ F

and H � G, then G/H ∈ F, and (ii) for all normal subgroups M and N of G,

if G/M and G/N are in F, then G/(M ∩ N) ∈ F. A formation F is said to be

saturated if G/Φ(G) ∈ F implies that G ∈ F. In this paper, U will denote the

class of supersolvable groups. Clearly, U is a saturated formation ([11, p. 713,

Satz 8.6]).

Let Z be a complete set of Sylow subgroups of a group G. If N ⊳ G, we

denote

ZN = {GpN : Gp ∈ Z },

ZN/N = {GpN/N : Gp ∈ Z },

Z ∩ N = {Gp ∩ N : Gp ∈ Z }.

Suppose P is a p-group, we denote Ω(P ) = Ω1(P ), if p > 2 and Ω(P ) =

Ω2(P ), if p = 2.
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2. Preliminaries

The following lemmas will be used in the proofs of our results.

Lemma 2.1 ([2, Lemma 2.1]): Let Z be a complete set of Sylow subgroups of

G, U a Z-permutable subgroup of G, and N a normal subgroup of G. Then:

(1) Z ∩ N and ZN/N are complete sets of Sylow subgroups of N and G/N ,

respectively.

(2) UN/N is a ZN/N -permutable subgroup of G/N .

(3) If U ≤ N , then U is a Z ∩ N -permutable subgroup of N .

Lemma 2.2 ([10, Lemma 3.1]): Let P be a normal p-subgroup of a group G

and Z a complete set of Sylow subgroups of G. If every cyclic subgroup of P of

order p or order 4 (if p = 2) is Z-permutable in G, then every cyclic subgroup

of P of order p or order 4 (if p = 2) is π-quasinormal in G.

Lemma 2.3 ([12, X 13]): Let G be a group and M a subgroup of G.

(a) If M is normal in G, then F ∗(M) ≤ F ∗(G), where F ∗(G) is the generalized

Fitting subgroup of G;

(b) If F ∗(G) is solvable, then F ∗(G) = F (G).

Lemma 2.4 ([16, Theorem 3.1 and 3.3]): Let F be a saturated formation con-

taining U , and let G be a group. Then G ∈ F if and only if G has a normal

subgroup H such that G/H ∈ F and every cyclic subgroup of F ∗(H) of prime

order or order 4 is π-quasinormal in G.

Lemma 2.5 ([21, Lemma 3.12]): Let p be the smallest prime dividing the order

of G. If the order of G is not divisible by p3 and G is A4-free, then G is

p-nilpotent.

Lemma 2.6 ([15, Lemma 2.6]): Suppose that G is a finite nonabelian simple

group. Then there exists an odd prime r ∈ π(G) such that G has no {2, r}-Hall

subgroup.

3. Main Results

Theorem 3.1: Let G be a finite group and Z a complete set of Sylow subgroups

of a group G. Suppose p is the smallest prime dividing the order of G and P
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is the Sylow p-subgroup in Z. If every cyclic subgroup of P of prime order or

order 4 (when p = 2) is Z-permutable in G, then G is p-nilpotent.

Proof. Assume that the result is false, and let G be a counterexample of minimal

order. Then we have:

(1) Op′(G) = 1.

If Op′(G) 6= 1, consider the quotient group G/Op′(G). For any cyclic sub-

group U of prime order or order 4 (when p = 2) of POp′(G)/Op′(G), we

can write U = UOp′(G)/Op′(G), where U is a cyclic subgroup of prime

order or order 4 (when p = 2) of P . By hypotheses U is Z-permutable in

G, thus U is ZOp′(G)/Op′ (G)-permutable in GOp′ (G)/Op′(G) by Lemma

2.1(2). Hence we get that the quotient group G/Op′(G) satisfies the hy-

potheses of the theorem, so G/Op′(G) is p-nilpotent by the minimal choice

of G. Therefore, G is p-nilpotent, a contradiction.

(2) If G is not simple, F (G) = Op(G) is the maximal normal subgroup of G.

Therefore, G/F (G) is a simple group.

Suppose N is a proper normal subgroup of G. By Lemma 2.1(3), every

cyclic subgroup of prime order or order 4 (when p = 2) of P ∩ N is Z ∩ N -

permutable in N , hence N satisfies the hypotheses of the theorem. There-

fore N is p-nilpotent by the minimal choice of G. By (1) N is a p-group.

So F (G) = Op(G) is the maximal normal subgroup of G.

Notice that there is some prime q 6= p in π(G), for otherwise G would be a

p-group.

(3) For any Sylow q-subgroup Q ∈ Z, where q 6= p, Op(G)Q = Op(G) × Q.

For any cyclic subgroup 〈x〉 of prime order or order 4 (when p = 2) of Op(G),

〈x〉Q is a subgroup of G by the hypotheses. Hence, 〈x〉 normalizes Q by

[11, IX, Satz 2.8]. Thus, [〈x〉, Q] ≤ Q ∩ Op(G) = 1, hence, 〈x〉Q = 〈x〉 × Q,

it follows that Q centralizes Ω(Op(G)). It follows that Q centralizes Op(G)

by [11, IX, Satz 5.12].

(4) F (G) = Z(G), p = 2 and G is a quasisimple group.

By (3) we know that Q ≤ CG(Op(G)) for any Sylow q-subgroup Q ∈ Z,

where q 6= p. It follows that Qg ≤ CG(Op(G)), ∀g ∈ G. By (2) we get that

G = Op(G) ≤ CG(Op(G)). Hence, F (G) = Op(G) = Z(G). It is easy to see

that G is nonsolvable, so p = 2 by the famous Odd Order Paper. Hence G

is a quasisimple group by (2) and the minimality of G.
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(5) The final contradiction. Now we use the Classification of Finite Simple

Groups to develop the final contradiction.

Let G = G/Z(G). By (4), G is a quasisimple group. By [8, pp. 43–44]

Z(G) is a subgroup of the Schur multiplier of G. From (1) and (4), we have

that p = 2 and Z(G) is 2-group. By [8, Table 4.1, pp. 302–303], Z(G) is

cyclic or exp(Z(G)) ≤ 4.

Let K1 = Ω1(P ), K2 = Ω2(P ) and let H1 = Ω1(P ). For any Sylow

r-subgroup Q in Z, by the hypotheses, 〈x〉Q = Q〈x〉 for any x ∈ Ki, which

implies that QKi = KiQ and Ki normalizes Q for i = 1, 2. If Ki = P ,

then G has a {2, r}-Hall subgroups, which contradicts Lemma 2.6. Hence,

we may assume that Ki 6= P and Ki 6= P for i = 1, 2. If all elements of

orders 2 and 4 in G are in Z(G), by [11, pp. 435, Satz 5.5], G is 2-nilpotent.

Hence, we may suppose that K2 6= 1.

(5.1) G is not a simple group of Lie type in characteristic s over GF (q),

where q = sf and s is prime.

Suppose that G is a simple group of Lie type over GF (q), where q = sf

and s is a prime.

(i) Case s = 2s: Suppose G ∼= A2(2
2). Let Q be the Sylow 7-

subgroup of G in Z. Then K2 normalizes Q. By [5, p. 23], K2Q

must be contained in a maximal subgroup M ∼= L2(7) of A2(2
2) by

conjugation. Then by [5, p. 3], |NM (M7)| = 21, contrary to the fact

K2Q ≤ NM (M7).

Suppose G 6= A2(2
2). Since Z(G) is a 2-group and (q±1, |Z(G)|) = 1,

by [8, Table 4.1, pp. 302–303], Z(G) is isomorphic to a subgroup

of Z2 × Z2. For x ∈ G and x ∈ H1, since x2 ∈ Z(G), we have

that xZ(G) ⊆ K2, hence H1 ⊆ K2. By [3, Theorem 12.1.1, p. 190;

Theorem 13.6.4, p. 235], we have P = K2, a contradiction.

(ii) Case s > 2: Suppose that G ∼= U4(3), then |Z(G)| divides 4 and

Z(G) is a cyclic group. The argument similar to that in the proof of

the case G ∼= A2(2
2) gives a contradiction.

Suppose that G ∼= Al(q), Dl(q),
2Dl(q) and 2Al(q). It follows from

the structure of G2 given in [4] and [8, Theorem 2.15] that there

exist an element v in K1 or K2 such that (NG(Gs))
v 6= NG(Gs).

On the other hand, by the hypotheses, we have (Gs)
v = Gs and

(NG(Gs))
v = NG(Gs), a contradiction.
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Suppose that G is not isomorphic to one of U4(3), Al(q), Dl(q),
2Dl(q)

and 2Al(q). Then by [8, Table 4.1, pp. 302–303], Z(G) is a subgroup

of Z2. We have H1 ⊆ K2. Let x ∈ K2 and x 6∈ Z(G). Let Q be

the Sylow r-subgroup of G in Z. Then 〈x〉Q = Q〈x〉, 〈x〉Q = Q〈x〉.

Thus 〈H1〉 normalizes Q. Taking r = s, we get that H1 is a subgroup

of a Cartan subgroup of G, hence H1 is an abelian group and . It

is easy to see that H1 is strongly closed in P with respect to G.

Since s > 2 and H1 = 〈H1〉 by [8, p. 237, Theorem 4.128], G is one

of L2(q), q ≡ 3, 5(mod8), 2G2(3
n), n odd, n > 1. If G is L2(q),

q ≡ 3, 5(mod8), then |K2| = 4 or 8 and 〈K2〉 = P , a contradiction.

If G is 2G2(3
n), then the Schur multiplier of G is 1, G = G, |K2| = 8

and K2 = P is an elemental abelian group of order 8 by [8, Theorem

3.33], a contradiction.

(5.2) G is not an alternating group An with n > 4.

Suppose that G = An is an alternating group, where n > 4. By

Kaluz̆nin’s Theorem [18, Theorem 1.6.19], we have K2 = P , a con-

tradiction.

(5.3) G/Z(G) is not a sporadic simple group.

Suppose that G is a sporadic simple group. Let r = max π(G), then

K2 normalizes Gr. Suppose G = M22. Since K2Q is contained in a

maximal subgroup in M22, by [5, p. 39], K2Q ≤ L2(11) and r = 11.

From the maximal subgroups of L2(11) listed in [5, p. 7], K2 = 1, a

contradiction. Thus G 6= M22. Then Z(G) ≤ Z2 by [8, Table 4.1,

pp. 302–303] and H1 ⊆ K2. Since |H1| ≥ 4 and H1 normalizes Gr, we

have that 4 divides |NG(Gr)|. By [9, pp. 40–69], the only possibility

is G ∼= He and |NG(G17)| = 17 · 8. Since the Schur multiplier of

He is 1, G ∼= He. By [5, p. 104], there exists a maximal subgroup

S4 × L3(2) in He, hence |K2| > 8. Since K2 normalizes G17, |K2|

divides |NG(G17)|, a contradiction.

Therefore, G/Z(G) is not a simple group, contrary to (4), completing

the proof.

Let p1 > p2 > · · · > pr be the distinct primes dividing |G|. Then G is said to

satisfy the Sylow tower property if there exist Gp1
, Gp2

, . . . , Gpr
such that

Gpi
is a Sylow pi-subgroup of G and Gp1

Gp2
· · ·Gpk

⊳ G for k = 1, 2, . . . , r.
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Corollary 3.2: Let G be a group and Z a complete set of Sylow subgroups

of G. If every subgroup of prime order or order 4 of Gp ∈ Z is Z-permutable in

G, then G satisfies the Sylow tower property.

Proof. Let p be the smallest prime dividing the order of G and P ∈ Z. By

Theorem 3.1 G is p-nilpotent. Let N be a normal p-complement of G. Clearly

N satisfies the hypotheses of G and, therefore, by induction N satisfies the Sylow

tower property. This proves that G satisfies the Sylow tower property.

As an application of Theorem 3.1 we next give a new and shorter proof of

the main result of [10].

Corollary 3.3: Let F be a saturated formation containing U , the class of

supersolvable groups, and Z a complete set of Sylow subgroups of a group G.

The following statements are equivalent:

(i) G ∈ F;

(ii) There is a normal subgroup H of G such that G/H ∈ F and the cyclic

subgroups of G
p
∩ F ∗(H) of prime order or order 4 (if p = 2) are Z-

permutable in G, for all G
p
∈ Z, where F ∗(H) is the generalized Fitting

subgroup of H .

Proof. By Lemma 2.1 and hypotheses, we know that the cyclic subgroups of

F ∗(H) of prime order or order 4 are Z ∩ F ∗(H)-permutable in F ∗(H), thus

Corollary 3.2 implies that F ∗(H) satisfies the Sylow tower property. In par-

ticular, F ∗(H) is solvable, hence F ∗(H) = F (H) by Lemma 2.3(2). Now hy-

potheses and Lemma 2.2 imply that the cyclic subgroups of F ∗(H) = F (H) of

prime order or order 4 is π-quasinormal in G. Applying Lemma 2.4 we get that

G ∈ F.

Theorem 3.4: Let G be a finite group and Z a complete set of Sylow subgroups

of G. Suppose p is the smallest prime dividing the order of G, G is A4-free and

P is the Sylow p-subgroup in Z. If every subgroup of P of prime square order

is Z-permutable in G, then G is p-nilpotent.

Proof. Assume that the result is false, and let G be a counterexample of minimal

order. Then we have:
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(1) Op′(G) = 1.

If Op′(G) 6= 1. It is easy to see that the quotient group G/Op′(G) satis-

fies the hypotheses of the theorem, hence G/Op′(G) is p-nilpotent by the

minimal choice of G. Therefore, G is p-nilpotent, a contradiction.

(2) If G is not simple, F (G) = Op(G) is the maximal normal subgroup of G.

Therefore, G/F (G) is a simple group.

Suppose N is a proper normal subgroup of G. If |Np| ≤ p2, Lemma 2.5

implies that N is p-nilpotent. Using (1), we obtain that N = Np. Hence,

assume that |Np| > p2. By Lemma 2.1, we know that N satisfies the

hypotheses of the theorem, hence N is p-nilpotent by the minimal choice

of G. By (1) N is a p-group. Hence F (G) = Op(G) is the maximal normal

subgroup of G.

Notice that there is some prime q 6= p in π(G), for otherwise G would be a

p-group.

(3) For any Sylow q-subgroup Q ∈ Z, where q 6= p, Op(G)Q = Op(G) × Q.

If |Op(G)| ≤ p2, then Op(G)Q is p-nilpotent by Lemma 2.5. Thus Op(G)Q =

Op(G)×Q. Suppose |Op(G)| > p2 . For any subgroup X of Op(G) of prime

square order, XQ is a subgroup of G by the hypotheses. Hence X normal-

izes Q by Lemma 2.5.

On the other hand, [X, Q] ≤ Q ∩ Op(G) = 1, hence XQ = X × Q. It

follows that Q centralizes Ω2(Op(G)), in particular, Q centralizes Ω(Op(G)).

Therefore, Q centralizes Op(G) by [11, IX, Satz, 5.12].

(4) F (G) = Z(G), so G is quasisimple.

By (3) we know that Q ≤ CG(Op(G)), it follows that Qg ≤ CG(Op(G)),

∀g ∈ G. By (2) we get that G = Op(G) ≤ CG(Op(G)). Hence F (G) =

Op(G) = Z(G). It is easy to see that G is non-solvable, so p = 2 by the

famous Odd Order Paper. Hence G is a quasisimple group by (2) and the

minimality of G.

(5) The final contradiction.

Now we use the Classification of Finite Simple Groups to develop the final

contradiction.

Let G = G/Z(G) and K2 = Ω2(P ). By (4), G is a quasisimple group.

If K2 ≤ Z(G), then G is 2-nilpotent by [11, p. 435, Satz 5.5]. Hence we

can assume that K2 6= 1. Let Q be the Sylow r-subgroup of G in Z and

L be any subgroup of P of order 4. Then LQ = QL by the hypotheses,
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hence LQ = QL. It follows that 〈K2〉Q = Q〈K2〉 and 〈K2〉Q ≤ G. By

[5], it is easy to see that every sporadic simple group has the section A4.

Since A4 ≤ An, n ≥ 5, the Alternating groups An with n ≥ 5 have the

section A4. Hence, we may suppose that G is a group of Lie type. By

Dickson’s Theorem, PSL(2, 7) ∼= PSL(3, 2) and PSL(2, q), where q = pf

and p is odd, have the section A4. Thus, by the information about groups

of Lie type in [17, Table 5.1] and [14, Table 3.5 A-3.5 F], if G is A4-free it is

isomorphic to one of the groups: PSL(2, 2f), f odd, 2B2(2
f ), f odd. If G

is one of PSL(2, 2f) and 2B2(2
f ), where f is odd, the Schur multiplier of G

is 1 and G = G. Let r be the largest primitive prime divisor of 22f −1 when

G is PSL(2, 2f) and the largest primitive prime divisor of 24f − 1 when G

is 2B2(2
f ). By [7], G has no the maximal subgroup including 〈K2〉Q, the

final contradiction.
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